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Cost-effectiveness analysis (CEA) provides information on how much extra do we need to spend per unit gain

in health outcomes with introduction of any new healthcare intervention or treatment as compared to the

alternative. This information is crucial to make decision regarding funding any new drug, diagnostic test

or determining standard treatment protocol. It becomes even more important to consider this evidence in

resource constrained low-income and middle-income country settings. Generating evidence on costs and con-

sequences of a treatment or intervention could be performed in the setting of a randomized controlled trial,

which is the perfect platform to evaluate efficacy or effectiveness. However, we argue that randomized

controlled trial (RCT) offers an incomplete setting to generate comprehensive data on all costs and conse-

quences for the purpose of a CEA. Hence, it is needed to use a decision model, either in combination with

the evidence from RCT or alone. In this article, we demonstrate the application of decision model-based eco-

nomic evaluation using 2 separate techniques - a decision tree and a Markov model. We argue that application

of a decision model allows computation of health benefits in terms of utility-based measure such as a quality-

adjusted life year or disability-adjusted life year which is preferred for a CEA, measure distal costs and con-

sequences which are much more downstream to the application of intervention, allows comparison with mul-

tiple intervention and comparators, and provides opportunity of making use of evidence from multiple

sources rather than a single RCT which may have limited generalizability. This makes the use of such evidence

much more acceptable for clinical use and policy relevant.

conomic Evaluation (EE) or cost-effectiveness anal-

ysis (CEA) is one of the important aspects of a

health technology assessment. Classically, CEA is
defined as a comparative assessment of two or more inter-
ventions, in terms of their costs and consequences.’ As the
definition suggests, any CEA would comprise two mea-
surements - costs and consequences, which has to be car-
ried out for both the intervention and the comparator/s.
Ultimately, it generates the evidence that how much extra
do we need to spend per unit gain in health outcomes with
introduction of any new healthcare intervention or treat-
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ment as compared with the alternative. In the entire pro-
cess, the key factor which determines the quality of a
CEA is how comprehensive are the methods to measure
both costs and consequences and is the valuation stan-
dardized across interventions. In other words, do we mea-
sure all the important costs and consequences which
accrue as a result of a given intervention? Consequently,
such an assessment can be performed alongside any epide-
miological or clinical study which is being used to measure
the effectiveness or efficacy, if we also piggy-back measure-
ment of costs alongside. However, an epidemiological
study may not be able to measure all costs and conse-
quences comprehensively, in a manner which may be
considered appropriate for a CEA. This leads to the need
for decision modelling.

Section 1 of this article describes the limitations of un-
dertaking CEA alongside a clinical trial which necessitates
use of a decision model. Subsequently, in section 2, we
describe how a decision model is able to bridge the limita-
tions of an epidemiological or clinical study in undertak-
ing CEA. We also introduce the 2 types of decision
models which are used for CEA, i.e., the decision tree and
Markov model. Section 3 uses an illustration of each of
the two types of decision models for explanation. A hypo-
thetical example of implementation of special newborn
care units (SNCUs) at district hospitals to treat sick
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newborns is used to explain a decision tree. Similarly, a
published CEA of use of sorafenib - drug used for treat-
ment of hepatocellular carcinoma (HCC) is used to explain
the Markov model. Finally, we conclude on what caution
should be exercised by the clinicians while undertaking a
CEA.

Can Randomized Controlled Trial Alone be
Used to do an Economic Evaluation?

As introduced previously, the measurement of costs and
consequences in a CEA can be undertaken alongside an
epidemiological or clinical study. Classically, a randomized
controlled trial (RCT) is considered the epidemiological
design with highest degree of rigour for internal validity,
hence the word RCT will be used as a proxy for an epidemi-
ological study.

An RCT is generally carried out to evaluate the clinical
efficacy of a drug, device, treatment or healthcare interven-
tion (Table 1). If alongside the measurement of the health
consequences, which is used to measure efficacy, data on
cost of delivering the intervention and comparator is also
collected, this information can then be synthesized to pro-
duce the results for CEA. This appears to be a very good
approach for undertaking CEA, as there are numerous
RCTs carried out to assess clinical efficacy, and all it needs
is an additional data collection for cost of care. However,
there are several limitations to using an RCT for doing
CEA.

First, the focus of RCT is to determine the clinical effi-
cacy. In view of this objective, careful selection criteria are
applied to recruit subjects and the interventions are deliv-
ered in the most optimal manner. Although this may be
perfectly justifiable to produce results which have high in-
ternal validity, there may be some limitation to generaliz-
ability. For example, a trial performed to evaluate the
vaccine efficacy ensured that all the kids who were immu-
nized were previously healthy, vaccine was potent and in-
jected in the recommended manner in correct dose and
route of administration. However, in reality, when immu-
nization is introduced in a public health program setting,
not all children may be vaccinated. Similarly, there may be
breakdowns of cold chain leading to lowered potency of
vaccine, and some babies may be given vaccine using sub-
optimal dose or incorrect route. Hence, the effectiveness
may be lower than the efficacy reported in RCT. For a
CEA which is dealing with a policy question of whether
to introduce the vaccine in national immunization
schedule, the data on pragmatic real-world effectiveness
is more useful than efficacy.

Second, several trials may be carried out for determining
clinical effectiveness in terms of outcomes which may be
perfectly rational to a particular health condition but
may not solve the needs for a CEA. For example, an RCT
for determining clinical effectiveness of new antihyperten-
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sive drug compared with the existing treatment measured
its effectiveness in terms of reduction in blood pressure.
However, the appropriate outcome measure which is rec-
ommended for a CEA is a generic utility-based measure
such as quality-adjusted life year (QALY) or disability-
adjusted life year (DALY). Use of such utility-based
outcome measures allows comparison of efficiency across
a range of different types of interventions applicable for
different diseases in different types of patient population.
This makes evidence useful for policymaking at a macro
level. Hence again, RCT falls short of providing solution
for CEA.

Third, on grounds of feasibility, most of the trials are
run for short periods which is appropriate enough to
demonstrate clinical effectiveness. However, a CEA aims
at measuring all the costs and consequences which are a
result of the intervention. For example, a clinical trial
which may be carried out for a hemophilus influenza
type ‘b’ (Hib) vaccine (given to children at 6,10 and 14
weeks of age) which offers protection against pneumonia
and meningitis due to the said organism, measured the ep-
isodes of Hib disease among vaccinated and unvaccinated
cohorts during a 1-year period after vaccine administra-
tion. Although this may be sufficient for measuring the
vaccine efficacy, however, the protection against Hib dis-
ease continues as long as child is susceptible, which is
generally about 5 years, and to a lesser degree as long as
15 years.2 Hence there is a reduction of disease episodes
much longer than the trial period. So, although a trial in
this case may measure all costs accurately - as all costs
related to vaccination are incurred in year 1, it underesti-
mates the overall downstream health benefits as well as
cost savings (due to decrease in treatment costs). To over-
come this problem of measuring benefits, RCTs will need
to be extended till the time intervention continues to be
beneficial, so that all costs and consequences are valued
credibly. However, this can sometime become unfeasible
because of constraints of funding a long-term RCT. This
may become even more difficult when the effects of an
intervention are much more distant in time, since the
application of intervention. For example, in case of a pre-
ventive intervention such as vaccine for human papilloma-
virus (HPV) to protect against cervical cancer among
women, although the vaccination is recommended to be
carried out around the age of 10-12 years, reduction in
the cancer cases continues to happen as late as 60 or 70
years or even later.” And it may not be feasible to have re-
sources to follow-up a trial cohort for a lifetime. Hence,
RCTSs may not offer the medium to generate data for CEA.

Fourth, a trial is generally conducted to evaluate a few
alternative options for treatment or addressing a particular
health problem. However, decision-making in the field of
policy is full of possible scenarios which need to be evalu-
ated for potential implementation. For example, a single
question of which is the most appropriate way to screen
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women for cervical cancer can be further stratified into
several scenarios based on which method should be used
(pap smear, visual inspection with acetic acid or HPV
DNA), which population should be screened (30-65 years,
40-65 years and 50-65 years), how frequently (annual, 3
yearly, 5 yearly, 10 yearly, once in a lifetime). Together these
can constitute 16 possible scenarios. However, it may be
difficult to have a single RCT with 16 arms to evaluate
all possible scenarios. In view of this limitation again,
RCT alone cannot be used to generate evidence for CEA.

Bridging the Limitations of RCT: Role for
Decision Modelling

A solution to bridge the limitations of RCT is to either un-
dertake decision modelling alone, or use decision model
alongside the evidence generated in RCT. A decision model
used for CEA is a biologically plausible sequence of occur-
rence of health consequences as a result of the decision of
undertaking an intervention. The model so prepared does
not only shows relationships but also mathematically
quantifies the probability of occurrence of such a health
consequence or outcome as a result of an intervention. In
the mathematical parameterization of a decision model,
the researcher can use pragmatic data on effectiveness
from a real-word study rather than an RCT. Alternatively,
an assumption which justifies the constraints of program
implementation or treatment administration in real-
world could be incorporated to generate an output which
is more acceptable. For example, one may consider findings
of a national evaluation which shows that the coverage of
routine immunization is not likely to be more than 90% in
the best possible scenario, and hence the efficacy of treat-
ment derived from RCT could be modelled on only 90%
of the intervention cohort to generate the health conse-
quences. Similarly, data from a universal treatment pro-
gram of HCV treatment could be used to determine
sustained virological response, rather than efficacy data
from trial.

Second, the evidence from a 1-year trial of antihyperten-
sive drug on reduction in blood pressure could then be
used along with evidence from other studies for effect of
lowering blood pressure on long-term consequences such
as coronary artery disease (CAD) or mortality or quality
of life, to model long-term consequences of the antihyper-
tensive drug on survival, life years and QALY.

The third limitation of an RCT was its inability to have a
longer time horizon to capture all cost consequences satis-
factorily. A decision model can use a lifetime study horizon
to capture all costs and consequences which can accrueasa
result of the intervention. Having said that, however, it
does not mean that this can be generated without a previ-
ous evidence. Hence, a model synthesizes evidence from
various inputs to predict long-term costs and conse-
quences. Finally, a model construction is not limited in

terms of the number of scenarios which it can potentially
evaluate. Thus, it overcomes the last limitation of an
RCT by enabling comparison with several possible treat-
ment or program interventions to deal with a given health
problem.

Two most commonly used decision models in CEA are a
decision tree and a Markov model. Classically, a decision
tree is a unidirectional flow of events which begins with
the decision of giving an intervention or not. This is fol-
lowed by occurrence of different sequence of outcomes
which may continue to happen with a given probability
or chance at each step in a unidirectional way. The tree ul-
timately ends with a terminal event in which individual
may return to full health or may die. The major limitation
of a decision tree is its unidirectional flow. This may be
suitable for acute disease conditions which follow a partic-
ular course because their onset and the patient may either
recover completely and live or may live with some long-
term sequelae or may die.

However, this may not be the case with chronic non-
communicable diseases. For example, a patient diagnosed
with hypertension may not necessarily remain hypertensive
all his life. He may recover back to be normotensive with
treatment or may progress to a worse off health state
such as CAD. Modelling such chronic diseases requires
application of a Markov model which differs from a deci-
sion tree in allowing transition from any one health state
to any other health state, which is biologically plausible
as per the scientific understanding of disease course.

The subsequent sections illustrate the use of a decision
tree and a Markov model for better understanding.

Decision Model 1: Decision Tree

Let us consider a policy choice between whether to
construct a SNCU - a level II intensive care unit, at the level
of district hospitals and continue routine care through ex-
isting paediatric services. The following hypothetical
example illustrates estimation of incremental cost per
QALY gained with implementation of a strategy to create
SNCU at the level of district hospitals, against a compar-
ator of routine management of sick newborns in these hos-
pitals. A decision tree was constructed for comparing these
2 policy options as shown in Figure 1.

The square box on the extreme left represent a decision
node - i.e. whether or not to build an SNCU. Subsequently,
it was assumed that the sick newborns could be treated in
either of the 2 scenarios, either SNCU or routine paediatric
care services. Each of the round circles represents a chance
node, where there is a probability of either of the subse-
quent events. For example, it was assumed that the sick
newborns after treatment in either SNCU or based on
routine management as per standard practice could either
die or remain alive within 28 days of birth. If the newborn
dies within 28 days, it signifies the end of outcome or event
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and is represented by a terminal node (triangle). However,
if sick newborn remains alive till 28 days of birth, there is
again a probability that the baby may become fully cured
with no disability, or may develop minor disability, or de-
velops a major disability and continue to live in that health
state. This course of events is similar in both the scenarios.
Further, there is a cost of alternative courses of actions,
which include treatment in SCNU or routine care, which
is summarized in Table 2. Furthermore, table 2 shows
each of these probabilities at different chance nodes, qual-
ity of life for each state, average life expectancy and cost of
being in each state. This hypothetical data in a typical
model-based CEA is sourced from either a single or multi-
ple clinical studies or a meta-analysis based on systematic
review.

In this hypothetical example, it is assumed that 1000
sick newborns with less than 1800 gms birth weight were
treated with either of the competing treatment practice. As-
signing all the probabilities and costs to each of the arms in
the decision tree, total cost of treating 1000 newborns with
each of the treatment strategy is shown in Figure 2. Multi-
plying the number of newborns treated with probability of
a given outcome, life expectancy of that outcome, and qual-
ity of life of that outcome provides an estimate of total
number of QALYS for that outcome branch. Similarly, QA-
LYs via all outcome possibilities (alive, minor disability and
major disability) were summated to derive the total QALYs
for 1000 sick newborns with either of the two policy op-
tions or treatment choices. The cost of each outcome
branch was estimated using the number of newborns in
that branch and the unit cost. Finally, it was observed
that treating 1000 babies in SNCU resulted in a gain of

GUPTA ET AL

Table 1 Differences in the Approach of Randomized
Controlled Trial and Economic Evaluation.

Characteristic Approaches for undertaking economic evaluation

RCT Decision model

Focus of
assessment

Internal validity External validity

Time horizon Usually short — enough to Usually long — to
estimate proximal clinical comprehensively estimate

endpoints downstream costs and
consequences
Measure of  Usually proximal clinical  Utility-based measure such
outcome endpoint, eg. reduction in as quality-adjusted life year
blood pressure (QALY)
Number of  Limited No limitation
comparators

RCT: randomized controlled trial, QALY: quality-adjusted life year.

14,652 more QALYs at an additional cost of INR 222,152
as compared with routine management (absence of
SNCU). This implies that creation of SNCU will incur an
incremental cost of INR 15.16 per QALY gained.
Compared with the threshold for considering cost-
effective, the incremental cost per QALY gained for treat-
ing babies in SNCU is very cost-effective in Indian
context and hence should be chosen as the treatment op-
tion.

Decision Model 2: Markov Model

In this, we use an example of a CEA which was used to eval-
uate sorafenib - a drug used to treat HCC." HCC is the pri-
mary malignant neoplasm of the liver. Majority (70%) cases

Alive at 28 days

No disability

Minor disability

Dead

| | N=1000

Alive at 28 days

No SNCU

Dead

/J\
w

Major disability

No disability

Minor disability

Major disability

ANAN A ANAAN

Figure 1 Decision tree structure to evaluate the cost-effectiveness of treatment of sick newborns in special newborn care units versus routine pae-

diatric care. *SNCU: Sick newborn care unit.
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Table 2 Parameter Values for Decision Tree.

Parameter Parameter definition Hypothetical values
Transition Probabilities Probability of dying after treatment in sick newborn care unit 0.3
Probability of dying after treatment based on current practice 0.6
Probability of developing minor disability after treatment in sick newborn 0.43
care unit
Probability of developing major disability after treatment in sick newborn 0.29
care unit
Probability of developing minor disability after treatment based on 0.25
current practice
Probability of developing major disability after treatment based on 0.5
current practice
Cost parameters Cost of treating a newborn in sick newborn care unit who develops no 818
(in Indian Rupees) disability
Cost of treating a newborn in sick newborn care unit who develops minor 1024
disability
Cost of treating a newborn in sick newborn care unit who develops major 1200
disability
Cost of treating a newborn (who develops no disability) based on current 1000
practice
Cost of treating a newborn (who develops minor disability) based on 1100
current practice
Cost of treating a newborn (who develops major disability) based on 1400
current practice
Quality of life With no disability 1
With minor disability 0.7
With major disability 0.4
Life expectancy (in years) With no disability 64
With minor disability 60
With major disability 55
No disability p=0.29, N=196, C=818, COSTS, QALYs
QALY=1*64

Minor disability P=0.43, N=301

<l 160328, 12544
Alive at 28 d (P=0.7, N=700) €=1024, QALY=0.7*60 Csneu= 712152

<] 308224, 12642 YAYsneu = 29652

SNicU Y Major disability N=203 P=0.29,
N=203 C=1200, QALY0.4 *55
<] 243600, 4466

Dead(P-os — ICER= INR 15.16 per QALY
No disability, P=0.25, N=100
C=1000, QALY=164

[:l N=1000 <] 100000, 6400

Minor disability P=0.25,N=100
Alive at 28 d (P=0.4, N=400) C=100, QALY=0.7*60

100000, 4200 Cpo sncu= 490000

I Major disability P=0.50, N= 200 QALY sncu = 15000
C=1400, QALY=0.4*55
<] 280000, 4400
No SNCU

Dead (P=0.6, N=600) 4

Figure 2 Solved Decision tree analysis to evaluate the cost-effectiveness of treatment of sick newborns in special newborn care units versus routine
paediatric care. *SNCU, Sick newborn care unit; QALYs, Quality-adjusted life years; ICER, Incremental cost-effectiveness ratio; P, Probability; C, Cost;

N, Number of sick hewborn.
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Progression free

state (PFS)

Sorafenib sPFSPD = 0.1786

BSC bPFSPD = 0.3571 Sorafenib sPFSD = 0.0003

BSC bPFSD = 0.0003

Disease specific

Progressive disease
(PD)

Sorafenib sPDD = 0.3750
BSC bPDD = 0.4120

Figure 3 Markov model to evaluate the cost-effectiveness of sorafenib
for treatment of hepatocellular carcinoma.

of HCC in India present at advanced stage (Barcelona
Clinic Liver Cancer [BCLC] stage C and D) in which cura-
tive resection is not possible. For these unresectable,
advanced HCC cases with extrahepatic spread or vascular
invasion, treatment options are limited. Targeted molecu-
lar therapy - sorafenib, is indicated for such patients with
advanced BCLC stage C and HCC. Sorafenib has been re-
ported to have an increased median overall survival and
time to progression in advanced HCC as compared with
best supportive care (BSC). The alternative to giving sora-
fenib is BSC which comprises standard routine care and
management of complications. Sorafenib and BSC arms
are considered as intervention and control, respectively.

Table 3 Markov Transition Matrix for Sorafenib Arm.

GUPTA ET AL

To model life-term costs and consequences, patients are
segregated into two alive health transition states termed
as progression-free state (PFS) and progressive disease
(PD) in intervention and control arm, respectively. As
shown in Figure 3, patients with HCC diagnosed in PFS
health state can advance to PD or death from all-cause
mortality health states. Death from HCC happens from
PD health state only. Figure 3 is next converted to Tables
3 and 4 which shows a transition matrices which
represents the probability of moving from each health
state to the next state in sorafenib and BSC arm,
respectively.

Let us decipher intervention transition matrix. Before
we begin the calculation, it is important to understand
that sum of the probabilities to move from any one health
state to either of the other health states in a given row must
be equal to one. For example, the sum of probability to
move from PFS to either PD or death or to remain in
PFS with treatment from sorafenib in Table 3 (row 1):

e Horizontal row for PFS in Table 3 = 0.8211 +

0.1786 + 0 + 0.0003 = 1

To understand how other probabilities are taking place
in the matrix, it is important to keep in mind the markov
schematic and the flow of one state to another. For PFS to
PFES probability is mentioned as 0.8211 which is derived in
terms of 1 — (0.1786 + 0 + 0.0003). Similarly, for remaining
in the PD state the probability of 0.6250 is deduced from 1
— (0 + 0.3750 + 0). The values 0 describe no movement

State going to
PFS A PD A Death from disease R All-cause mortality
1 1 1

E |PFS 7 | 1-sPFDPD-sPFSD | | sPFSPD | | 0 ' | sPFSD
= ! ! !
g PD 0 1| 1-sPDD | | sPDD K
B} ,' ) !
£ Death from disease 0 R .7 0
@ .’ el =T

All-cause mortality 0 -2 -7 10 __---1 07 1

Table 4 A Schematic to lllustrate the Mathematical Computation of Markov Trace in Excel.

Sorafenib (Intervention) arm — How to implement in excel

A B Cc D E F
1 Cycle PFS PD Death from All-cause Check
disease mortality
1000 0 0 0 =Sum (B2:E2)
=B2*(1-sPFSPD-sPFSD) =(B2*sPFSPD) +(C2*(1-sPDD)) =C2*sPDD =B2*sPFSD = Sum (B3:E3)
=B3*(1-sPFSPD-sPFSD) =(B3*sPFSPD) +(C3*(1-sPDD)) =C3*sPDD =B3*sPFSD =Sum (B4:E4)

PFS, progression-free state; PD, progressive disease.
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Cycle PFS PD

Sorafenib (Intervention) Arm - markov cycle

Death from All-cause
disease mortality
0 . -
o 1
. ¥l 0 ) 4
@D
Y : 5
"\\-?g o o
SN G :
N A
Ol

Figure 4 lllustration to depict the movement from one health state to another in the sorafenib arm.

between the respective health states. As for death from dis-
ease and all-cause mortality which is a terminal
state because patients cannot move to any health state
once they die so the probability to remain in the same
health state is always 1.

Using the Markov schematic as shown in the following
paragraph, we will illustrate the steps involved in building
Markov trace and further calculations to arrive at incre-
mental cost-effectiveness ratio (ICER). The following illus-
tration (Figure 3) is shown for sorafenib arm only.

Then, we show to convert the Markov model to a tran-
sition matrix which again describes the probabilities for a
given case of HCC to move from one state to another
(Table 3).

Figure 4 and Table 4 shown in the following mathemat-
ically describes the movement of an HCC case from one
transition state to another. Here, each cycle represents
one year. In the first year, all 1000 cases are assumed to
be detected in PFS stage. Based on the probability of pro-
gression, 179 cases move to the PD stage, whereas remain-
ing 821 cases remain in the same PFS stage. Similarly, in
cycle 3, although 68 of the 179 PD cases die, 111 continue
to remain in the PD stage. Another 147 PFS cases progress
to PD stage, thus making the total PD cases in year 3 -258.
A total of 674 cases are thus left in PFS stage. This calcula-
tion is extended in each cycle, till all cases have died. This
implies a lifetime study horizon. One may note that the to-
tal number of cases in each row remains 1000. Table 4
shows how the mathematical computation takes place in
excel to derive these numbers. Similar calculation is also
undertaken for the control or BSC arm to evaluate the out-
comes.

Once we have the cohort in each cycle for each health
state in our Markov trace, we use the number of individuals
in each health state to multiply with annual cost of being

in each health state, as well as the utility or quality of life in
the respective health states to arrive at total costs and QA-
LYs for each cycle. Finally, we add the lifetime costs and
QALYs in each scenario by summing the costs and QALYs
in each year or cycle. Similar analysis is undertaken for the
BSC arm as well. To arrive at the ICER, we will use the
following formula:

Total Sorafenib.,gs — Total BSCpgs

ICER = -
Total Sorafeniboary; — Total BSCgarys

Overall, an EE needs measurement on costs and effects for
2 or more possible alternative which are being compared.
An important consideration for a robust CEA is that
both costs and consequences (in terms of QALY or
DALY) of alternative courses of action need to be measured
comprehensively. This implies that the time horizon
should be sufficiently long enough. The measurement of
such costs and consequences could be performed along-
side a clinical trial. However, as we discussed, an RCT
may have limitations in certain context to generate robust
evidence for a CEA.

As a result, application of decision models becomes
imperative. However, it needs to be recognized that deci-
sion models are not free of inaccuracy. These decision
models can lead to erroneous findings due to several rea-
sons - first, if the model structure if incorrect and is not
biologically plausible, then it leads to incorrect output.
Second, a model is as good as the values of parameters
which are fed to generate output. Hence, any uncertainty
in the values of these parameters can lead to uncertainty
in estimate of the ICER. This is not an unthinkable option,
as each epidemiological study also has some uncertainty
around the sample estimate which it generates because of
sampling variation. As a result, just as the 95% confidence
interval is computed around the estimate found in an RCT,
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similarly it calls for a sensitivity analysis in a decision
model-based CEA to compute 95% confidence intervals
around the ICER. Subsequently, it needs to be assessed
whether the null value for the ICER lies within the 95%
bounds. Third, the population group which is considered
in a decision model may not be representative of the certain
population groups. Subgroup analysis is the way forward
in such situations.

To conclude, one can say that each of the methodology
has certain limitations. However, the decision modelling
does overcome several limitations of an RCT-based CEA.
As a result, gradually, there is a trend towards CEA which
is carried out using a decision model alone, or using a de-
cision model alongside an RCT.”° Such as decision model
would need evidence for parameters, which could be
limited. However, the key would be to use as much robust
data to parameterize the model and then take a decision.
After all, a policy maker or program manager or a clinician
can have 2 options to make a decision about the appro-
priate intervention - either wait for the best possible data
to be generated or make the best possible decision (using
a model) with the available data! There can always be op-
tions to revisit the decision when better data are generated.
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